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Abstract

Inthis paper, Floquet’stheorywill be applied to a positive periodic operator on a Banach
space to show the existence and uniqueness of a solution to Floquet eigenvalue problems
and their adjoints. Then, the theory will be applied to an age-structured equation with
positive and periodic coefficients to study a Floquet exponent, which measures the
growth rate of a population. At the same time, exponential and long-run asymptotic
decay will be derived using the entropy method.

1. Introduction

When modelling population dynamics, the first step is to identify significant variables that enable the division of a population into
homogeneous subgroups. This is used to describe the dynamics of the interaction between these groups. Age is one of the most natural and
significant parameters for structuring a population. Many internal variables are dependent on age. For example, age differences may be associated
with different reproductive and survival abilities. A model for age-structured populations (McKenDrick, 1926; von Foerster, 1959) was designed
to study disease transmission in populations. Often diseases have different infection and mortality rates for different age groups (Anderson & May,
1991). For instance, chickenpox or measles are spread mainly via contact between two members of a population of a similar age. In models of
disease transmission, an age-structured equation is useful as it allows the ages of different members of a population to be accounted for when
determining variables such as contact rates. lannelli & Milner (2017) defined the evolution of a population over time using an age density function
known as the McKendrick equation. There are several reasons for introducing time dependence between the coefficients of this equation.
A common rationale is to represent seasonality. Another is related to modelling cell division in cancer treatments, such as resonance and chrono-
therapy, which are based on modelling Circadian rhythms (Clairambault et al., 2016). In this paper, an age-structured model is analyzed for the
periodic death and birth rate of a population over time. It uses a partial differential evolution equation (lannelli & Milner, 2017) that models the
dynamic nature of the population density n(t, x) of individuals aged x > 0 atatime t € (0, o) with age-dependent birth and death rates. The age-
structured equation has the following form;
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0 d
—n(t,x) + —n(t,x) +dt, xn(t,x) =0, Vt=>0,x =0
at dx "
n(t,x=0) =f B(t,x)n(t,x)dx
0
N n(t =0,x) =n),

where d(t, x) and B(t,x) represent the death and birth rate of a population, respectively, as periodic functions with a period T.
This work derivesasolution for the age-structured equationand its long-run asymptotic exponential decay, as well as a proof of itsuniqueness.

2. Methodology

An age-structured model based on a partial differential evolution equation has been used to predict population density dynamics. More
specifically, thisisan eigenvalue problem that posessome fundamental questions about the existence and uniquenessof th ese equations. To answer
these questions, Floquet’s theory is applied to a Banach space. This is an extension of applying Floquet’s theory to a matrix (Brown et a., 2013)
to prove the existence of a Floquet exponent. Then, the long run asymptotic exponential decay of the solution of the age-structured equation is
proven via the entropy method (Perthame, 2007; Michel et al., 2004; 2005).

3. Results and Findings

This work comprises two parts. The first deals with the extension of Floquet’s theory for any positive periodic matrix to any positive periodic
operator on a Banach space. More specifically, a linear differential equation of the form
d
—X(t) = A@®)X(t),
ZX(0) = AOX®

where t € R, X(t) is a vector on a Banach space E and A(t) is a periodic continuous operator with period T on E.
The existence and uniqueness of the Floquet exponent A, and the positive and T -periodic N(t), ¢(t) will be proven for the following equations

WO — AONE) ~ 2o N©) and =22 = 4 (06.0) — 20 p(0).

The second part of this paper applies these results to an age-structured equation. Partial differential evolution equations using coefficients that
are periodic functions of time are used to model population density dynamics. The existence and uniquenessof (4., N, ¢) will be proven for the

following age-structured equation:
0 0
an(t, x) + an(t, x) +d, xn(t,x) =0, Vt>0,x =0

n(t,x=0) =f B(t,x)n(t, x)dx

)
n(t =0,x) =nx).

The associated Floquet eigenvalue problem of the age-structured equation above is given by:

0 0
S NEx) + N + (Aper+ d(t, x))N(t, X) =0, Vt >0,x >0
N(t,x=0) =f B(t,x)N(t,x)dx
0 T =)
k N(t,x) > O,T—periodic,f f N(t,x)dxdt =1,
o Jo

And it’s adjoint eigenvalue problem is given by

d d
— 57 $60) = 260 + (A +d(6,0)) (6, %) = BE,x)$ (5, 0),
vVt=>0,x=0

L ¢(t,x) >0,T —periodic,j N, x)p(t,x)dx = 1.
0

The long-run asymptotic exponential decay of this equation is derived as follows:

f |n(t, x)e Pt — pN(t, x)|d(t, x)dx < e~ f [n%(x) — pN (0, x)1¢ (0, x) dx.
0 0

where p = fowno(x)¢(0,x) dx and its long-run asymptotic behaviour via the entropy method

j |n(t,x)e~%t — pN (t,x)|p(t,x)dx — 0 ast - co.
0
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Flogquet’s Theory
Floquet theory for matrix. The following homogeneous linear periodic system

R ORTION(G] (L1
where X € R% and A(t) is a continuous d x d real matrix-valued functionin ¢, and A(t + T) = A(t), for someT > 0. A unique solution exists
for Equation 1.1 for the initial condition X (¢) = x,. Thissolution satisfies X (t) = ®(t, ty)x o, Where® (¢, to), isknown asaprincipal fundamental
matrix solution and is a solution to the matrix initial value problem;

d
Ed)(t,to) = A()D(t,ty), D(tg, to) =1.
1. As this solution is unique,
d(t,r) =0(t,s)P(s,r), Vr<s<t
2. @(t, ty) = d(ty,t)~ L.
Thus, it may be observed that

d

Eqb(t +T,tg+T) =At+ TPt +T,tg+T) = AP+ T, to+T)
(p(to + T,to +T) =1

Again, due to the uniqueness of the solution, @(t + T,ty + T) = ®(t, o).

Now, it may be denoted that,

M(to) = (p(to + T, to) and M = q—')(T, 0)

Then, it follows that
M) =0, +T,t)) =P(t; + T, tg+ TP (tg + T, to) P (to, t1)
=@ (ty, to)) M(to)P(ty, o) 2.
This means that M(t,) and M(t;) are similar for t, < t; and thus have the same eigenvalues. That is, the eigenvalues of M(t,) are independent
of t,. Thus, the eigenvaluesof M = @ (T, 0), also known as a monodromy matrix, are of interest to this study. As det(M) # 0, a constant matrix
B exists, whereby M = eT5,
Definition 1.1. The eigenvalues p; of M are called Floquet multipliers. The complex eigenvalues 4; of B are called Floguet exponents and are
related by the equation p; = e,
Theorem 1.2 (Floquet). If M is a monodromy matrix for a T-periodic linear system (Equation 1.1). Then, there is an invertible periodic matrix
P(t) and a constant matrix B such that
@(t,0) = P(t)etB for any t > 0.
Proof. If w(t) := &(t + T,0) then the following initial value problem is satisfied

d
s Yit) =At+ TP () = AP (),
vo)=M
since A(t) is T-periodic, a unique solution is given by ¥ (t) = (¢, 0)M.
Thus,
®d(t+T,0) =&(t,00M = d(t,0)eTB,

By taking P(t) := @ (t, 0)e ~tB,
P(t+T) =@t +T,0)e DB = ¢(t,0)eTBe~(¢t+T)B = p(¢)
and P(0) = 1.
Theorem 1.3. There exists a real 2T -periodic matrix Q (¢t) and a real matrix R such that
@(t,0) = Q(t)etr.
Proof. Since det (M) # 0, there exists a real matrix R such that M2 = e2TR,
Thus, it may be defined that (t) := @ (¢, 0)e "tk .
Then, it follows that
Q(t +2T) = &(t 4 2T,0)e 2TRetR = (¢ + T,0) Me~2TRetR
= @(t,0)M2e~?TRetR = p(t,0)MZM 2R = Q(t).
Therefore, Q is 2T -periodic.
Theorem 1.4. If p; is a characteristic multiplier and 4; is a corresponding characteristic exponentso that p; = e then a solution X (t) exists
for Equation 1.1, such that
1L X@E+T)=piX(t)
2. X(@®) = N(t)eMt, where N:R, —» R%is a T- periodic function.
Proof. If p; is an eigenvalue of M, then v; # 0 and Mv; = p;v;. Thus, if X(t) = @(t,to)v;, then X(¢) satisfies the initial value problem

d
7X© =A0XO,
X(to) = 17]' .

17
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It follows that
XE+T) =0 +T,to)v; = O, to))Mv; = p;d(t,to)v; = p;X (£).

Furthermore, by taking N (t) = X(t)e~%" and using the fact that p; = e, it may be stated that
N(t+T) =Xt +Te D = px(t)e e T = X(Oe Mt = N(O).
So, when A(t) is a positive T-periodic function, and if fOTA(t) dt is positive and irreducible, then matrix B in Theorem 1.2 is also positive and
irreducible, leading to the following corollary.
Corollary 1.5. There exists a Floquet exponent A, > 0 and a T-periodic N (t) > 0 satisfying
dN(t)

dt
Proof. Since B is positive and irreducible, so is M. Thus, by the Perron-Frobenius theorem, an eigenvalue A > 0 of B exists and is associated with

a positive eigenvector. If it is taken that A, = A > 0. Then e*eT is a positive eigenvalue of M associated with a positive eigenvector v.
Then it may be defined that

=A@)N() — A, N(D).

N(t) = X(t)e Hert,
where X(t) = ®(t,t,)v and the desired result follows from Theorem 1.4.
Next, the adjoint linear periodic system can be considered

%Z(t) = —A*(OZ(0). (1.2)
Given Z(ty) = zy, it has a unique solution Z (t) = ¥ (t,,t) zo, Where ¥ (t,, t) is defined as the matrix solution to

d
El}'(to,t) = —A*" (D)W (to,t), P(tg,to) =1.
The monodromy matrix M* then may be defined as follows:
M =w0,7) = (0°0,7) " = (¢(T,0) " = ML
Theorem 1.6. If p; be a characteristic multiplier and 4; is a corresponding characteristic exponent so that p; = eT . Then there exists a solution
Z(t) to Equation 1.2 such that
1. Zt+T)= piz(t).
Jj
2. Z(t) = ¢>(t)e"1ft for some T-periodic function t ~ ¢(t) € R% .
Proof. If p; be an eigenvalue of M, then, v; # 0 such that Mv; = p;v;. Let Z(t) = ¥(to,t)v;. Thus Z(t) satisfies the following initial value
problem

d

—Z(t) = -A*(t)Z

T ® ©)Z(1),

Z(to) = 'U]'
Then,
1
Z(t+T) = Y(to,t +T)vj = ¥(to, )M vy = pi "W (to, t)v; = p—Z(t).

j

And it may be defined that ¢ (t) = Z(t)e™*. Thus if p; = 7, it follows that
Pt +T) =Z(t+ Tl = p1z()ehitelT = Z(D)eht = ¢(t).
Corollary 1.7. Under the assumption that A(t) is positive and T-periodic, a Floguet exponent A,,., > 0 and a T-periodic ¢(t) > 0 exists satisfying

dp@®) _ .
= AOO = 4,,¢(0).

Proof. Since B is positive and irreducible, so is M. Therefore, by the Perron-Frobenius theorem there exists an eigenvalue A > 0 of B with an
associated positive eigenvector. If itis taken thatA,.. = A > 0, then e®=T is a positive eigenvalue of M associated with a positive eigenvector v.
Thus it may be defined that

() = Z(t)eM,
where Z(t) = ¥ (t,,t)v and the desired result follows from Theorem 1.6.
Floquet theory on Banach space
If a linear periodic system on a Banach space E is considered,

d
EX(t) =AW X (). (1.3)

where X € E and A(t) is a continuous operator-valued T-periodic.
Then is a unique solution to Equation 1.3 together with the initial value X(t,) = x, € E. This solution is given by X(t) = U(t,ty)xo, Where
U(t, to) is a linear and bounded operator on E and satisfies the following properties:

1 SU(t) = ADUG to), Ulto,te) =1
2. U@r)=Us)U(s, 1), foranyr <s<t
18
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3. U@+T,to+T)=U(,ty).
If an operator-valued function is specified as M(t,) := U(t, + T, ty) and a monodromy operator as M := U(T,0), then the following can be
denoted:
Definition 1.8. u is an eigenvalue of M if u € o, (M), thus, there is a non-zero vector v of E such that Mv = uv. This vector is an eigenvector
corresponding to the eigenvalue u of M.
Theorem 1.9. The following results hold:
1. M(to+T)=M(t,)
2. oy (M(to)) = 0, (M) where o,(M) = {u: ul — M is not one-to-one}.
Proof.
1. By the definition of M, it follows that
M(tg+T) =U(tg+T+T,to+T) =U(tyg+T,ty) = M(to).
2. ltcan be proven thatfor t, < t;,0,(M(ty)) = a,(M(t,)). For instance, if u € o, (M(t,)), then 0 # v € E exists, such thatM (¢o)v =
uv. Then, if w:= U(t,,ty)v, it follows that
M w=U(ty + T, t )w = U(ty + T, t)U(t1, to)v
=U(y +T,tg)v=U(t, + T, to +TU(to+ T, to)
= U(ty, to)M(to)v = uU(ty, to)v = uw.
Thatis, 1 € o, (M(t,)). This means that a,,(M(t,)) € 0, (M(¢y)).
Conversely, it may be said that if no € N large enough, so that noT + t, > t;, then a,(M(t,)) € o, (M(n,T + t5)). Finally, since M (¢,) is T-
periodic, then
Op (M(t)) € Op (M) € Op (M(noT +1to)) = Op (M(to)).
Theorem 1.10. If u = T, then the following are equivalent.
1. wisan eigenvalue of M
2. A T-periodic function t » N(t) € E exists, where
X(t) = N(t)e’ is a solution to Equation 1.3 with an initial value X(t,) = x,.
Proof. Inthe theorem above, (1) implies (2). Followingthe same process as the proof for this matrix, (2) also implies (1). Then, if v, := U(0, tg)x,,
it follows that
N(t +T) = X(t + T)eAt+D)
=U(t+ T, to)xge Mt+D
=U(t+ T, T)U(T,0)y e~ 2t+T)
=U(t, 0)U(T,0)y e At+T),
Or alternatively,
N+ T)=N(®)
=X({t)e M
= U(t, to)xge M
= U(t,0)y e,
Therefore,
U(t,0)U(T,0)y, = e*T U(t, 0)y,.
By taking t = 0,
My, = U(T, 0)y, = e*Ty,
It follows that e/ is an eigenvalue of M.
Corollary 1.11. If additionally, an operator U(t,0) is compact and strictly positive on a Banach lattice, thena Floquet exponent A, > 0 and a T-

per
periodic N(t) > 0 exists, satisfying

WO — AN = AN, (14)
Proof. Since M = U(T,0) is compact and strictly positive, the Krein-Rutman theorem demonstrates that there is a simple eigenvalue u > 0 with
an associated eigenvector No > 0. Taking 4, > 0, such that u = e’T and defining N(t) = X(t)e %t > 0, such that X(¢t) is defined as in
Theorem 1.10, the desired result is yielded.
Corollary 1.12. (Uniqueness). There is a unique solution (up to a multiplicative constant) to the Floquet eigenvalue problem in Equation 1.4.

Proof. If another positive T-periodic solution M(t) exists for Equation 1.4, it can be proven that N(t) = cM(t) as follows

%(eﬂmw(o) =AMt M().

The uniqueness of the solution to Equation 1.3 with the initial value gives

M) = e Mt U(t, t)x,.
Takingt =T,

M(0) = M(T) = e 2 TU(T, to)xy = e = TU(T,0)U(0, to)xo = e =T U(T, 0) M(0).

Since M(0) > 0, e®T isan eigenvalue of M = U(T,0) with an associated eigenvector M(0), then e’ isa simple eigenvalue of U (T, 0) with
an associated eigenvector N,. Hence M(0) = cN,. Thus,

M) = e UL, to)xo

19
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~het (¢, 0)M (0)
~het 7 (t, 0)c N
= cN (o).
For the adjoint linear periodic system
L2(6) = -4 (OZ(), (1.5)
where A(t) is a continuous T-periodic linear operator-valued function, the following can be denoted.
Theorem 1.13. If u = 7, then the following are equivalent.
1. pisan eigenvalue of M
2. A T-periodic function t — ¢(t) € E suchthat Z(t) = ¢(t)e~* where Z(t) is the solution of (2.5) with an initial value Z(t,) = z,
exists.
Proof. In the theorem above, (1) implies (2). Following the same process as the proof for this matrix, (2) also implies (1). Thus
ot +T) =Z(t 4+ T)ert+T)
=W(ty,t + T)zy e+
= P(ty, )WP(0, T)zy eM+T),
Or alternatively,

¢t +T) = ¢(0)

=Z(t)eM
= P(ty, t)zoeM.
Thus
Y(ty, t)¥(0,T)zy = ¥Y(ty,t)zge
Taking t = ty,

M1z = ¥(0,T)zy =e Tz,
That is, eA” is an eigenvalue of M.
Corollary 1.14. Inaddition, if the operator U(t, 0) is compactand strictly positive on a Banach lattice, a Floquetexponent 4,,,. > 0 and a T-periodic
¢ (t) > 0 exists satisfying

_de® .
7t = A" () p{) — Aper (D).

Proof. Since M = U(T,0) is compact and strictly positive, the Krein-Rutman theorem demonstrates that there is a simple eigenvalue u > 0 and
associated eigenvector ¢ > 0. If itis taken that 1., > 0, suchthat u = e AeT and o) = Z()e™t > 0, where Z(¢t) is defined as in Theorem
1.13, the desired result is obtained.

General relative entropy

Definition 2.1. (Perthame, 2007, p. 165) If H is a real-valued convex function, then the general relative entropy (GRE) may be defined as

d
2. (38w,

where X; (t),N;(t) and ¢; (t) satisfy Equations 2.1, 2.2 and 2.3, respectively.

The uniqueness of the solution to the Floquet eigenvalue problem

If A(t) = (aij(t)) =0forl <i,j<d,thenX;(t) >0,N;(t) >0,¢; (t) > 0and itcan also be proven thata unique 4,,,, exists with a maximal

real part such that

per

PO 30y (OX;(0) = 4,0 X (0) @.1)
an (t) Z alj(t)N (t) pcrNi(t) (22)
dd"“’ = %, 4 (O0¢;(6) = Aperhi(©). (2.3)

Theorem2.2. IfA(t) be a T-periodic matrix with (Ape,, N, ¢) defined asabove, then forany positive initial conditions, for any solution of Equation
2.1, and any positive convex function H, then

N;(t)

_ (XK@Y (X X@© X;(®) X;(@®)
PuO®) = Zj“”(tw"(t)"’i“) [H (m(ﬂ) <1vl- O Nj(t)> HH <Nj(t)> - <1vl- (t)>] =0

MO0 = (Nig) N© b (OH' (ﬁ 8) dt(f, E’g)

X; (t)) dy Xi(t)aNi(t)

d
vVt =0, %Z H (X (t)>N ®);(t) = =Dy (X)(1),

where

Proof.

= diOH <N ® 0)

20
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Xi(0) (2 g (ON; () = 2,6,N: (©)
N;(®)

Xi(f)>

=aom (35

Z ai;(OX;(8) = Ao X, () —
J

= ¢i(OH' <Xi (t)> ag; (ON; () (£) z (Xj(t) X (t)>
]

N;(®) N;(t)  Ni(t)

and
X;(®) X;(®)
3108 (350) % @) + o (1) L 4,0
— pon (59) Dy OWO = 2D |+ MOH (3u) - 2080 + b

=¢-<t)H<Xi“))Za On© - non (355 ())Za--(w(p-(c)

' N; () g N;(® SN PR
Thus,

d
d X;(t) ~
E;H <Ni(t)) N;(®)¢;(£) = =Dy (X)(¢).

Corollary 2.3. A unique solution (up to a multiplicative constant) exists for the Floquet eigenvalue problem denoted by Equations 2.1, 2.2 and 2.3.
Proof. Using the general relative entropy property with the convex function H(s) = (s — 1) ?,

2
=1 N @i (0) (Xl_(t)_ 1) — X ay(ON;(O)¢; (1) (le B X_m) <0

N; (8) Ni(®) N (D)
Thus 2L, N ()¢p; (£) (%?) - 1) is a positive, periodic and decreasing function, hence, it is constant and
X xi(:)) _
X a;;(ON; (O (t) (N]_(t) o) =
This is only possible when forall i,j = 1, ..., d,
Xi© X _ — .
N;(@®)  N;(©)

It can now be proven that in the case where X;(t) = c(¢)N;(t), c(t) must be constant. Using Equations 2.1 and 2.2

%Xi(t) N:i(©) o c(t)+c(t) N(t)—N(t) c(t)+c(t) Zaiij(t)—/lperNi(t)

J

= N o c(t) [ Dl ayx® - 4,.x0

J
—N(t) c(t) + dX ®).

Then N; (t) c(t) = 0. Since N;(t) > 0, c(t) =0. S0 c(t) is constant as required.

Asymptotic behaviour

Here, the maximum entropy principle is used to prove exponential decay.

Proposition 2.4. If ¢ and C are constants, such that ¢N;(0) < X;(0) < CN;(0), then it holds that
cN;(t) < X;(t) < CN;(t) for any t > 0.

Furthermore, a constant a > 0 such that

d d 2
2 ) (%—1) < 2 NOHO (3D 1)

Proof. By applying the entropy principle to the convex function H(s) = max(0,s — C), it may be shown that X%, N;(0)¢; (0)H (g Eg;) 0.

However, as general relative entropy is nonnegative and decaying, it remains zero at all times.

d
Z Ni(t)¢i(t)H<)1\(;'((?)> =0 foranyt > 0.
i=1 t

Xi(t)

Since N;(t), ¢;(t) >0, H (N-(t)

CNi(t) < Xi(t).
To prove the second claim, the entropy property may be applied to the convex function H(s) = (s — 1) 2 to obtain
21

) = 0; that is X;(t) < CN;(t). Similarly, for the convex function H(s) = max(0,c —s), it can be shown that
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da 2 2
d X;(®) B X)X (t))
EZ Ni()$:(6) ( o ) = Z] @i (ON;(O¢pi (1) < R0

Xi(©) ’
—azida-(t)zvi(t) (Ni(t)_l) .

where Lemma 2.5 (below) and the Gronwall’s inequality (see Appendix) are used.
Lemma 2.5. If ¢(t),N(t) > 0,a;;(t) > Oforalli,j = 1,...,d,i # j, then there is a constant a > 0 such that the following inequality holds

d
mi(©)  mi(t) Wio)
Z ¢ a;(ON;(6) (Nj(t) - Ni(t)) Z i (ON; (t)(N (t)>

ij=1
for all m such that X%, ¢;(©)m;(¢) = 0.
Proof. For the case m(t) =0, the proof is trivial. So a case where case m(t) # 0 and is considered and normalized so that

Y i ()N (t) (m‘(t)) = 1. This case is proven by contradiction. If no such «a exists, a sequence (m"" (t))k>1 can be constructed, with

d
(t) m¥(t)
Z ¢i()a; (ON; (1) ( N; ® NO >

Lj=1
da K 2
m; ® _
Z ¢i(t)1vi(t)( o (t)) =1

The compactness of (mk (t)) follows from the Arzela-Ascoli theorem, so a convergent subsequence can be extracted still denoted by
>1

1
<=
k

and

(m"(t))k 1Wi’[h Igim m¥ (t) = m(t). Then passing to the limit gives X%, ¢; (£) N; (£) m‘(t)) 1 and
m© e\
Zl¢i(t)aij(t)Nj(t)<Nj(t) N )
i,j=
By the positivity of ¢;(t),N;(t),a;;(®), T((S T;f(t) v(t), for all ij=1,..,d. However since 0=XL ¢;(ON; (t):rvl((;)
i ;i (

v(©) X, ¢ () N; (D), it follows that v(t) = 0, which contradicts to X, ¢; () N; (t) (;n((tt))) =1.

Application to an age-structured equation

Now a model of dynamics of population age-structured canbe considered in which the coefficients are a periodic functionof time. This is described
by the following VVon Forester-McKendrick partial differential equation
%n(t, x) +%n(t,x) +d(t,x)n(t,x)=0, Vt=0,x >0
n(t,x=0) = foooB(t, n(t,x)dx (3.1)
n(t=0,x) =n%x),

where n(t,x) is a population density of individuals of age x > 0 atatime t € (0, ) with d(t,x) and B(t, x) representing the death and birth rate
of a population and being T-periodic, respectively. The boundary condition at x = 0 represents the number of newborns attime ¢t and n°(x) is the
initial age distribution of the population at time ¢t = 0. It is assumed that d > 0,B > 0,d,B € W1* and

1< inf f B(.,x)e” Jo dl=xty)dy gy
te(o,1) Jo

sup f B’(.,x)e_f0 =24y VY Gy < oo,
te(o,1) Jo

Then Equation 3.1 can be written as an evolution equation

—n=An
at
n(0,x) = n°x)
with the operator An = — %n — dn is defined on the space
E = {n(t,x) € D'((0,00) x (0,0))|n(t, 0) = [, B(t, )n(t,x)dx}.
The long-run asymptotic behaviour of the population density, with a growth rate measured by the Floguet exponent A, using the Floquet
eigenvalue problem can now be studied
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] a
EN(t,x) + aN(t,x) + (Ape,.+ d(t,x))N(t,x) =0,vt=0x=>0
N(t,x =0) = [, B(t,x)N(t,x)dx 3.2)
k N(t,x) > 0,T — periodic, foT waN(t, x)dxdt = 1
together with its adjoint eigenvalue problem
3 a
—2 (%) — = (6,0 + (R + d(6,0)) $(E,0) = B(E,0)(2,0),
vt>0,x=0 (33)
¢(t,%) > 0,T — periodic, [;” N (¢, x)p(t,x)dx = 1
First, the existence and uniqueness of the following partial differential equation are considered
Theorem 3.1. If u > 0, then a unique solution n € C(R,, L (R,;¢ (., x)dx)) to the below equation exists

d d
an(t, x) + an(t, x) + (,u +d(t, x))n(t,x) =0,vt=0,x=0

n(t,x=0) = fooB(t,x)n(t, x)dx
)

n(t=0,x) =nx) € L'(R,;¢(0,x)dx).
Proof. The Banach-Fixed point theorem in the Banach space X = C([0,T],L!(R,;dx)) endowed with the norm |lnlly =
supeeor) lIn(t )l g,y and foragiven n® € L1(R,;dx) is used to show that n(t, x) is a fixed point of a contraction operator. The operator is

defined as follows.
U:X - X

mwe n=U(m),
where n is a solution of

0 0
an(t, x) +an(t,x) +m(,u + d(t,x))n(t, x) =0,
n(t,x=0) =f B(t,x)m(t, x)dx
)

n(t =0,x) =nx).

If my,m, € X and n; = U(m;),i = 1,2, then the difference n = n; —n, satisfies

a a

an(t, x) +%n(t,x) + (u + d(t,x))n(t, x) =0,

n(t,x=0) =f B(t,x)m(t, x)dx
)

nt=0,x) =0,
where = m; — m,, . It also holds that

a d
Eln(t, x)| +os In(t, )|+ (u+ d(t,x)In(t,x)| =0,

In(t,x =0)| =

fooB t,x)m(t, x)dx
0

t [n(t =0,x)| =0.
By the characteristics method,
0, x>t
n(t x) = {n(t —x,0)e o D =xryy)ay o oy
Since d, B are positive and bounded, then there is a constant M > 0 such that
|B(t, x)e_fgtd(t_x+y'y)dy| <M.

Thus,
t ¢ .
InCt, Iz, =f |n(t,x)|dX=j In(t — x,0)]e~ o Wt E=xty)dy g,
0 0
t [e<] x
=f f B(t —x,z2)m(t —x,z)dz e~ o () t=xtyy)dy g,
o 1o
t
SMJ(; ||m(t,.)||L1(R+) dx = tM||m(t,.)||L1(R+).
Hence,

“n”x = Supte[o,T]”n(t'-)IILl(R+) < SUPiefor] tM”m(tn-)”Ll(RJr) = TM”m”x-
And itis proven that U: X — X.By selecting T so that M < % it follows that

1
”U(ml) - U(mz)llx < E ”m1 - mz”x-
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This meansthat U is a contraction in the Banach space X, which provesthe existence of the fixed point. This process can be iterated on the intervals
[T,2T],[2T,3T],... to build a solution in C(R,,L (R,;dx)). Next, the density argument is used to complete the proof: Let n° €
L*(R;;¢(0,x)dx),3ny € L1(R;dx) such that nd — n® in L'(R; ¢(., x)dx), and 7 (¢, x) be solution of

J%ﬁ'k(t,x) + %Tk(t,x) + (u+dt,x))aetx) =0

\ i (t,x = 0) =j0 B(t, x)7, (t,x)dx.
If i = ny, — 1, then
2 (A0, 9) + 2 (76 D€, 0) = ~p(& 0B & VA
¢ (t, 0)7i(t,0) = ¢(t,0) waB (t, 0)7t,x)dx
And it also holds that
%Uﬁ(t, 0t x) +%(|ﬁ(t, gt x) = —p(t, 0)B(t, )7t x)|

(&, 0l7E, 0] = ¢(t,0)

f B(t, x)7(t, x)dx|.
0
Integrating with x gives

%J(; (It 01 (t, 1))dx < 0.
And finally,

Llr’l‘,’c—r’l‘ﬂ(l)(t,x)dxsfo |n2—n2|¢(0,x)dx.

Thus, 7 is a Cauchy sequence in a Banach space C(R+, LY(Ry;0(, x)dx)). So 7i converges in the space to a solution in the distribution sense.
Corollary 3.2. With the assumptions on d and B as above, there is a unique A,,, >0 and N, ¢ € C(R+,L1(R+; ¢(.,x)dx)) of the Floquet
eigenvalue problem in Equation 3.2 and its adjoint eigenvalue problem in Equation 3.3.

Proof. If 4., = u >0, then N(t,x) € C(R4, L1(R4;¢(.,x)dx)) exists by Theorem 3.1. It satisfies

4] 3]
EN(t,x) + aN(t,x) + (Ape,.+ d(t,x)) N(t,x) =0.
Similarly, its adjoint is given by

d d
— 57 $(60) = 26 0) + (A + d(6,0)) $(6, %) = B, ) (5, 0),

where ¢(t, x) € C(R,,L (R4;$ (., x)dx)). Moreover, the operator U is strictly positive in C(R,, L} (R, ;dx)) and T-periodic as soon as d, B are.
Itis also compactsince sup {{lUM)lly; lInlly < 1} is uniformly bounded hence equicontinuous and compactness follow fromthe Arzela-Ascoli
theorem.

Then by Corollary 1.11 and Corollary 1.14 with A, = p suchthat (i) = 1, the spectral radius of U and up to renormalization N, ¢ is unique. To
end the proof, u needs to be found such that (u) = 1. Since r is decreasing function and vanishes at infinity and

r(0) > inff B(,x)e o dlmxyydy o 5 q
0

It follows that a unique A, exists such that r(2,,,,.) = 1.

Long run asymptotic: exponential decay

In this section, long-run asymptotic exponential decay will be proven.
$(tx)

50’ it follows that

Theorem 3.3. Under the assumptions for d and B above and an additional assumption that 3a > 0 such that B(t,x) = «

fo |n(t,x)e~Ht — pN(t,x)|Pp(t, x)dx < e at Jo [n%(x) — pN (0, x) (0, x)dx,

where p = fowno(x)(ﬁ(o,x)dx.
Proof. By taking h(t, x) = n(t,x)e Mt — pN (t,x) and using Equations 3.1, 3.2 and 3.3

2 (he.900) + (e (6 D) = ~4(, 0B DR
¢ (t, 0h(t,0) = ¢(t,0) fo OoB(t,x)h(t,x)dx.
By integrating with respect to x, it follows that
%fomh(t,x)d)(t, x)dx = —¢(t,0) meB(t,x)h(t, x)dx + h(t, 0)¢(t, 0) = 0.
Then,

[oe]

fwh(t, x)p(t,x)dx =f h(0,x) ¢ (0, x)dx
0 0
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= fom(no(x) — pN(0,x))¢(0,x)dx
= fwno(x)(j)(o, x)dx — p fOON(O,x)qj,(o'x)dx
0 0

=f n%(x) (0, x)dx —p = 0.
0
And it also holds that,

%Uh(t, )|t x)) +%(|h(t, Olp(t, %)) = —p(t,0)B(t,x) | h(t,x)]
¢ (t,0)|h(t, 0)]| = ¢p(t,0)

f B(t,x)h(t,x)dx]|.
0
Now integrating with respect to x,

%fowlh(t,xﬂtl)(t, x) dx = —p(t,0) [ Bt 0)h(t, x) |dx + |h(t, 0| (¢, 0)
< —¢(t,0) fwB(t, x)|h(t,x) |dx +
0

fw[(j)(t,O)B(t,x)h(t, x) —a¢p(t, x)h(t,x)]dx
0
< —¢(t,0) waB(t, 0)|h(t, x)dx + fow(¢>(t, 0)B(t,x) — a¢(t, x))|h(t,x)|dx

—a jw¢(t, 0|h(t, x)|dx.
)

The proof is completed with Gronwall’s inequality.

Long run asymptotic by the entropy method

Now long run asymptotic behaviour is proven by the entropy method.
Theorem 3.4.

1. Forall convex function H and all ¢ > 0; it holds that

dit_[, ¢(t, x)N (¢, x)H<

Ay
%) dx = —Dy(n)(©) <0

® (n(t,x)e et ®n(t,x)e et
ou0 = oo || (MG )

2. For the probability measure du.(x) = [B(t,x)N(t,x) /N (t,0)]dx and for all convex functions H: R, — R; it holds that

n(t, x) e dert ®n(t, x)e et
f[f ( o )dut(x)—HUO S duf(x))]dt

n®(x)
< Kf ¢(0,x)N(0, x)H<N(0 )>dx.

3 (n(t, x)e Het N 3 [(n(tx)e Het o
ot N(t, x) ox N(t, x) e
] u n(t, x)e et N ] u n(t,x)e Aot —0
ot NG, %) ox N@Ex) )

0 n(t, x)e Mot
a [¢ (t, X)N(t, X)H <W>:|

3] n(t,x)e et
+a [¢(t, x)N(t,x)H <W):|

where

Proof. Using Equations 3.1 and 3.2,

Hence,

And finally, it holds that

Jpert
= N(t,x)H (%) (%d)(t, X) + % qb(t,x))

~Apert
+¢(t, H <M><a NG+ 0 — NG x)>

N(t, x)
a0 [n(t,x)e v G| n(t, x) e ert
+¢p(t, x)N(t,x) [E <W> + aH (W)]
Apert
= —B(t, x)¢(t, 0N (¢, x)H (%)

Integrating with x and using the notation du.(x) = [B(t, x) N(t, x) /N(t,0)]dx, which is a probability measure
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d ® n(t,x) e et
E.fo ¢, x)N(t,x)H <—N(t,x) >
3 ® 9 n(t, x) e Mt @ n(t, x)e et
= —fo a[d)(t, x)N (¢, X)H<7N(t, o) )] dx —fo B(t, x)d)(t,O)N(t,x)H(iN(t'x) )dx
Ayt o Ayt
= ¢(t, ON(t, O)H (%) — $(6, 0N (L, 0) fo H <%> dpe ()

=) Apert 8] Apert
— ¢t ON(2, 0) [H( fo %dum) - fo H(%)duf(@].

n(tx)e tpert

) )dx is decayingand so the first

The last quantity is negative because of Jensen’s inequality. This shows that fom ¢(t,x)N(t,x)H (

inequality is found. By integrating again in t, the second inequality is obtained.
Theorem 3.5. Under the assumptions for d and B above and n° € L*(R,,¢ (0, x)dx), it holds that

f [n(t, x)e et — pN(t, %) |p(t, x)dx = 0 ast — oo,
0
where p = fowno(x)(ﬁ(O,x)dx.

Proof By setting h(t,x) = n(t,x)e Mt — pN(t,x), h satisfies the equation
h(t x) +os h(t x) +( er + d(t,x)) h(t,x) =0, Vt=0,x =0

o (3.4)
h(t,x=10) = fo B(t,x)h(t, x)dx

It also holds

%Uh(t, )t x)) +%(|h(t, Olp(t, %)) = —p(t,0)B(t,x) |h(t,x)]

¢ (t,0)|h(t, 0)| = ¢p(t,0) fo B(t, x)h(t,x)dx|.

Now integrating with respect to x,
a (o] [ee)
Ef [h(t, )| (t, x) dx = —¢>(t,0)f B(t, x)|h(t, x)|dx + [h(t, 0)Ip (£, 0) <O.
0 0

This yields that fowlh(t,x)|¢(t,x)dx is decaying and it is positive, so it converges to some value L > 0. It remains to prove that L = 0.

Now the solutions hy (t,x) = h(t + k,x) € C(R,,L*(R4; ¢(.,x)dx)) to Equation 3.4 are defined. If H is positive convex, then Theorem 3.4
shows that a quantity I, defined by

e () “ hy (t,x)
Ik_fo UO H(N(t,x)>dut(x)—H(0 NG )d,ut(x)>]dt

— * ® h(t, x) h(t X)
B Jl; [L H (N(t,x)) due () — H (J(; N(t x) d/it(x)>]

is bounded. As the integrand is positive and integrable, it can be deduced that lglm I, = 0. Moreover, h; (t,x) satisfies the equation

9 9
5w (63) + - hi (62) + (Aper+ d(€,20) hie(t,x) = 0, V£ = 0,x > 0

hy(t,x = 0) =f B(t,x)h; (t,x)dx
0

\ fowhk (t,x)p(t, x)dx = 0.

Then hy(t,x) € LY (R,; ¢(.,x)dx) is bounded up to a subsequence, h; — g weakly. Passing to the limit in the definition of I, and using the

convexity in weak limits,
% (9t %) (T (%)
[ L (s o= o [ [0 (g Jaweoe

=f0 H( 0 zg'?)dut(x)>dt.

The last equality is valid since Iéim I, = 0. But from Jensen’s inequality, the reverse inequality is also found. Hence,
—00

9(t x) _ (7 “g(t,x)
ff (N(t )d,ut(x)dt—fo H(O N(t’x)dut(x)>dt-

This strictly convex equality for H shows that for almost all t > 0 on the support of u,,

g(t,x)
NEx) c(@).

The limit in the weak sense gives
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[ee]

0 d
— > >
{—atg(t, x) +_6 g(t,x) + (Aper+ a(t, x))g(t, x)=0,Vt=0,x=>0

k g, x=0) =f B(t,x)g(t, x)dx
0
and
9gtx) 0dgltx)
AtN(t,x) 9xN(tx)
Hence % = C(t) and as a result

0= fo gt x)(t, x)dx = C(t)f0 N(t,x)p(t, x)dx = C(t).

It can be concluded that L = 0 since L = f0m|g(t,x)|¢(t,x)dx.

Here, the following Lemma 3.6 (Perthame, 2007, p. 100) was used.
Lemma 3.6. Any function u = g/N satisfies

g g
g =< >
(t,F(x)) N(t,x) Vt>0,x=>0

i(g(t,X)>+i<g(t.X)> o
at \N(¢t, x) ax\N(t,x))

and the fact that

is constant.
4. Discussion and Conclusion

An age-structured model with both death and birth rates depending only on age (not varying in time) was analyzed for the existence o f long-
run behaviour. This model was based on the general relative entropy method in Perthame (2007). In this work, an age-structured model with both
death and birth rates of a population that depend on age and time, and that is periodic over time has been analyzed. Floquet theory was applied to
Banach space to prove the existence and uniqueness of the solution of this age-structured equation. In addition, the general relative entropy method
(Perthame, 2007) has been used to derive the asymptotic exponential decay of the solution for this setting. The exponential rate of convergence
guarantees that the solution reaches the steady-state fast enough to be observed in practice. The exponential decay rate is known in the case of
non-constant coefficients (Gwiazda & Perthame, 2006). While in our case, the exponential decay holds for a wider class of data. The existence
and uniqueness of the solution for the Floquet eigenvalue problem for the periodic operator on Banach space have been proven, so as long as the
models can be written asa partial differential evolutionequation. Itis now temptingto apply the Floquettheory on Banach space to more advanced
models such as age-structured models with migration, growth-fragmentation equations or cell division equations (Mischler & Scher, 2016). The
aim of this work was twofold. On one hand, the existence and uniqueness of the solution of the Floquet eigenvalue problem on Banach space have
been proven. On the other hand, the existence and uniqueness of the solution of the age-structured equation with positive and periodic coefficients
have been proven. Moreover, long-run asymptotic exponential decay of the solution of the age-structured equation has been derived.
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Appendix

Lemma (Gronwall’s inequality). If u € C1([0,T]) satisfying %u(t) < au(t), for all t € [0, T] where « is constant, then u(t) < u(0)e*t.

Definition. If T be an operator on a Banach space, the spectrumof T is 6(T) = {1 € C: (Al — T)~! does not exist}. Thus, the spectral radiusof T
is 7(T) = sup{lil:1 € a(T)}.
Theorem. The spectrum of abounded linear operator coincides with the spectrum of itsadjoint; thatis, o(T) = o(T*). Inparticular, v(T) = r(T*).
Theorem (Perron-Frobenius) (Perthame, 2007, p 160). If A is a positive, irreducible matrix, d x d; then the spectral radius r (4) of A is a positive
simple eigenvalue of A associated with a positive eigenvector.
Definition. A cone K in a real Banach space (X, ||.|) is a closed set of X if it satisfies

1. 0€eK

2. x,y€EK,thenAx+puy €K, VAu=0

3. x€Kand—-x €K, thenx=20
On a real Banach space (X, ||.||) the order on a cone K is defined by

xzyox—yeK)and (x>y o x—ye Int(k))
A cone K is reproducible if vx € X,3y,z€ K,x =y — z.
Acone Kisnormalif 0<x <y =|x|| <|ly .
A dual cone of K is K* = {y € X*,Vx € K, (y,x) = 0}.
Theorem (Krein-Rutman) (Perthame, 2007, p. 175). If (X, |.|]) is a real Banach space, K c X areproducible and normal and T linear, compact
and strictly positive (on K) operator. Then the spectral radius r(T) of T is a positive simple eigenvalue of T associated with a positive eigenvector.
Inaddition, if Int(K*) isnon-empty, thenr(T) isalso a positive simple eigenvalue of the adjoint operator T* associated with a positive eigenvector.
Theorem (Banach-FixedPoint). If (X, d) isacomplete metric spaceand f: X — X isacontraction;thatis, k € [0,1) existssuchthatfor any x,y €
X,
d(f00, fF ) < kd(x, ).

Then there exists a unique fixed point for f.
Theorem (Arzela-Ascoli). If (X,d) is a compact metric space. A subset F of C(X) is relatively compact if and only if F is bounded and
equicontinuous.
Corollary. If (X, d) is a compact metric space and (f;,) c C(X) is a bounded sequence and equicontinuous in € (X), then (f;,) has a uniformly
convergent subsequence.
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